CROSSLINKING OF CYTOCHROME c TO PEROXIDASE: COVALENT COMPLEX CATALYZES OXIDATION OF CYTOCHROME c_1 BY H_2O_2

B. WALDMEYER, R. BECHTOLD, M. ZÜRRER and H. R. BOSSHARD

Biochemisches Institut der Universität, CH-8028 Zürich, Switzerland

Received 21 August 1980

1. Introduction

Yeast cytochrome c peroxidase (EC 1.11.1.5) is a hemoprotein from the intermembraneous space of mitochondria [1-3]. The enzyme catalyzes the oxidation of ferrocytochrome c by H_2O_2 . The mode of interaction of cytochrome c with the peroxidase might be exemplary for other electron transfer reactions with cytochrome c since several hemoproteins are known to bind to the same 'active site' of the cytochrome c molecule (reviewed in [4]).

Here we report on the preparation of a covalent complex of cytochrome c from horse heart with yeast peroxidase. When compared to free peroxidase the covalent complex still has 10% peroxidase activity toward exogenous ferrocytochrome c. In addition, the complex also catalyzes the electron transfer from reduced cytochrome c_1 which by itself is not a substrate of the peroxidase, to H_2O_2 . These findings are discussed with respect to the adequacy of the complex as a model for the non-covalent enzyme—substrate complex.

2. Materials and methods

Cytochrome c peroxidase, prepared as in [5], had a heme content of 29.5 nmol/mg protein and a E_{408}/E_{280} ratio above 1.2. Cytochrome c_1 was isolated from beef heart [6] and was further purified by affinity chromatography on cytochrome c coupled to Sepharose 4B (R. Bechtold and R. Rieder, unpublished). [³H]Methylated cytochrome c (3.2 methyl groups per molecule, 5.7 mCi/ μ mol) was prepared as in [7]. Dithiobis(succinimidylpropionate) (DTSP) was from Pierce, cytochrome c (type III) from Sigma and DEAE-cellulose (DE 32) from Whatman. Con-

centrations of peroxidase and cytochrome c_1 and c were determined as in [4,5].

[3 H]Methylated cytochrome c (20 nmol), native cytochrome c (362 nmol) and peroxidase (255 nmol) in 5 ml of 5 mM Na-phosphate pH 7.0 were treated at 0°C with N-ethylmaleimide (27 μ mol) for 5 min followed by DTSP (3.7 μ mol) for 15 min (pretreatment with N-ethylmaleimide blocks the single SH-group of peroxidase and prevents disulfide exchange with DTSP. The free SH-group is not essential for peroxidase activity [1]). Excess of DTSP was destroyed with (NH₄)HCO₃ (300 μ mol). The reac-

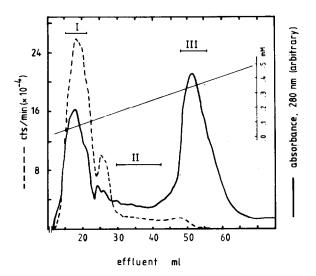


Fig. 1. Purification of the covalent cytochrome c—peroxidase complex on DEAE-cellulose. The protein peak from the Sephadex G-25 column (12 ml) was applied on a column of DEAE-cellulose (11 cm \times 0.9 cm) equilibrated with 20 mM Na-phosphate pH 6.0. Elution was with a linear gradient from 20 mM to 500 mM Na-phosphate, pH 6.0 at a flow-rate of 1.4 ml/h (molarities refer to the phosphate concentration). Aliquots of 5 μ l of each fraction of 0.7 ml were tested for ³H-radioactivity.

tion mixture was chromatographed on a column of Sephadex G-25 in 20 mM Na-phosphate pH 6.0. The protein peak was pooled and chromatographed on DEAE-cellulose (fig.1). Fractions from the DEAE-cellulose column were analyzed by electrophoresis on polyacrylamide gels [8].

Cytochrome c peroxidase activity was measured according to [5]. The assay mixture contained 25 μ M ferrocytochrome c, 170 μ M H₂O₂ and 0.5 nM to 1 nM peroxidase in 20 mM Tris/HCl pH 7.0. Cytochrome c_1 peroxidase activity was measured by following the decrease of absorbance at 553 nm. Further details are given in the legend to fig.3.

3. Results

Treatment of cytochrome c (containing some [3 H]methylated cytochrome c as a marker) and peroxidase with the cleavable crosslinking reagent DTSP [9] produced a small amount of a 3 H-labeled compound of apparent molecular weight 46 000 (fig.2, lanes A and A'). This compound was separated from cytochrome c (mol. wt 12 500) and peroxidase (approx. mol. wt 31 000) by chromatography on DEAE-cellulose (figs.1 and 2, lanes B-D). Some cytochrome c dimer was also produced by reaction with DTSP (fig.2, lanes B,B').

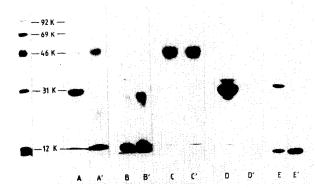


Fig. 2. Analysis of products of crosslinking reaction on 12% polyacrylamide gels. Coomassie-stained gels (A to E) and corresponding autoradiograms (A' to E') are shown. Reaction mixture before DEAE-cellulose chromatography (A,A'), pool I (B,B'), pool II (C,C') and pool III (D,D') from DEAE-cellulose column (fig.1), products after treatment of pool II with dithioerythritol (E,E'). Molecular weight markers: cytochrome c (12 500), carboanhydrase (31 000), methylated ovalbumin (46 000), albumin (69 000) and phosphorylase B (92 000).

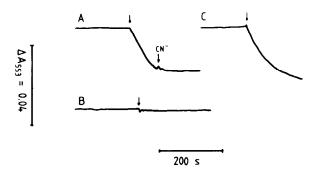


Fig. 3. Oxidation of cytochrome c_1^{2+} (3 μ M) by H_2O_2 (80 μ M) catalyzed by 0.1 μ M covalent complex (A) or by 0.1 μ M free peroxidase (B). Cytochrome c (0.3 μ M) had no effect on the oxidation of c_1 (3 μ M) catalyzed by 0.1 μ M covalent complex (C). Reactions were run at 5°C in 0.3 M Tris-acetate pH 7.5. Identical traces were obtained whether reactions were started by adding H_2O_2 (arrows) or covalent complex. The reaction in A was stopped by 20 mM KCN (arrow). The concentration of the covalent complex was estimated photometrically using $\epsilon_{408} = 200 \text{ mM}^{-1} \text{ cm}^{-1}$ (sum of ϵ_{408} 's of ferricytochrome c and peroxidase).

Incubation of the 46 000 compound with dithioerythritol (50 mM) produced 3 H-labeled cytochrome c and peroxidase (fig.2, lanes E,E'). Hence, the 46 000 compound consists of cytochrome clinked to peroxidase. The molecular weight is in accord with a 1:1 complex. Higher ratios of cytochrome c to peroxidase in the crosslinking reaction led to some 2:1 complex (data not shown).

The covalent complex still had about 10% cyto-chrome c peroxidase activity when compared with the parent enzyme (turnover numbers at 20°C of 60–80 s⁻¹ and 800 s⁻¹, respectively). The activity was not due to contaminating peroxidase (fig.2, lane C). Contrary to the parent enzyme, the covalent complex also catalyzed the oxidation by H_2O_2 of reduced cytochrome c_1 (fig.3, traces A,B). The reaction had a turnover number of about 0.2 s⁻¹ (5°C) and was inhibited by cyanide, or by low ionic strength (data not shown).

The covalent complex was slightly contaminated with free cytochrome c (fig.2, lane C). Therefore, the c_1 -peroxidase activity might have been due to the following chain of redox reactions: $c_1 \rightarrow$ free $c \rightarrow$ covalent complex \rightarrow H₂O₂. This possibility was ruled out by showing that additional cytochrome c did not increase the c_1 -peroxidase activity (fig.3, trace C).

4. Discussion

One way of elucidating the binding site for cytochrome c on peroxidase is to prepare a covalent complex and to analyze the site of crosslinking. The difficulty with this approach is that crosslinking might also occur outside of the binding site proper. With a single binding site per molecule of peroxidase [1,10,13], the covalent 1:1 complex should be inactive. Hence, we may explain the remaining 10% of cytochrome c peroxidase activity of our complex by heterogeneity of the sites of attachment. Alternatively, if crosslinking occurred between residues peripheral to the actual site of inter-protein electron transfer, and given a length of 11 Å of the spacer [9], some covalently linked cytochrome c might be mobile enough to allow for productive binding of exogenous cytochrome c. The latter explanation could also hold for the cytochrome c₁-peroxidase activity, an exclusive property of the covalent complex (fig.3). Bound cytochrome c must be able to oscillate between the nearby electron acceptor site of the peroxidase and exogenous cytochrome c_1 for there is only a single binding site on cytochrome c for both, peroxidase and c_1 [6,11,12]. This interpretation is further strengthened by the observation that c_1 -peroxidase activity disappears at low ionic strength where binding between c and c_1 and between c and peroxidase becomes very tight [6,1].

Analysis of the sites of crosslinking is now underway in our laboratory. The results, together with those already obtained from another covalent complex [13] and from model studies [14] should help to reveal the cytochrome c binding site on the peroxidase molecule.

Acknowledgements

We are most grateful to Dr R. Bisson for communicating his results before publication. This work was supported by the Swiss National Science Foundation.

References

- [1] Yonetani, T. (1976) in: The Enzymes (Boyer, P. D. ed), vol. 13, pp. 345-361, Academic Press, New York.
- [2] Poulos, L., Freer, S. T., Alden, R. A., Edwards, S. L., Skogland, U., Takio, K., Eriksson, B., Xuong, N., Yonetani, T. and Kraut, J. (1980) J. Biol. Chem. 255, 575-580.
- [3] Maccecchini, M. L., Rudin, Y. and Schatz, G. (1979)J. Biol. Chem. 254, 7468-7471.
- [4] Rieder, R. and Bosshard, H. R. (1980) J. Biol. Chem. 255, 4732-4739.
- [5] Nelson, C. E., Sitzman, E. V., Kang, C. H. and Margoliash, E. (1977) Anal. Biochem. 83, 622-631.
- [6] Bosshard, H. R., Zürrer, M., Schägger, H. and Von Jagow, G. (1979) Biochem. Biophys. Res. Comm. 89, 250-258.
- [7] Rieder, R. and Bosshard, H. R. (1980) J. Biol. Chem. 253, 6045-6053.
- [8] Laemmli, U. K. (1970) 227, 680-685.
- [9] Lomant, A. J. and Fairbanks, G. (1976) J. Mol. Biol. 104, 243-261.
- [10] Ermann, J. E. and Vitello, L. B. (1980) J. Biol. Chem. 255, 6224-6227.
- [11] Kang, C. H., Brautigan, D. L., Osheroff, N. and Margoliash, E. (1978) J. Biol. Chem. 253, 6502-6510.
- [12] König, B. W., Osheroff, N., Wilms, J., Muijsers, A. O., Dekker, H. L. and Margoliash, E. (1980) FEBS Lett. 111, 395-398.
- [13] Bisson, R. and Capaldi, R., personal communication.
- [14] Poulos, T. L. (1980) Fed. Proc. 39, 1824.